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S I M P L E  W A V E S  O N  A S H E A R  F R E E - B O U N D A R Y  

F L O W  O F  A N  I D E A L  I N C O M P R E S S I B L E  F L U I D  

V . M .  Teshukov UDC 532.591+517.958 

The existence of simple waves is established for the system of integrodifferential equations governing the 
evolution of rotational free-boundary flows of an ideal incompressible fluid in a shallow-water approximation. 
The general properties of simple waves are analyzed. A new class of exact solutions describing the propagation 
of simple waves over a stat ionary shear flow is found. 

Some exact solutions in the class of simple waves were found for this model in [1-4]. 
1. S y s t e m  of  S i m p l e - W a v e  E q u a t i o n s .  The system of integrodifferential equations 

h 

u t + u u ~ + v u y + g h , : = O ,  u x + v y = 0 ,  hi+Q Judy) = 0  (1.1) 
:E 

0 

describes an ideal incompressible heavy fluid flow with a free boundary y = h(x, t) above an even bot tom 
y = 0 in a long-wave approximation [5] (HolLo << 1, where H0 and L0 are the characteristic horizontal and 
vertical scales). Here (u, v) is the fluid-velocity vector, h is the layer depth,  g is the gravitational acceleration, 
x and y are the Cartesian plane coordinates, and t is the time. The  nonpenetrat ion condition v(x, O, t) = 0 is 
satisfied at the layer bot tom.  

It is convenient to analyze the equations of motion in the Eulerian-Lagrangian coordinates x', )~, t' 
()~ E [0, 1]). Transformation to the new variables is g ivenby  solution of the Cauchy problem [6] 

x = t = t', u = r  t'), r  + o ,  t)o  = v (x ,  o ,  t), 0) = o 0 ( x ,  (1.2) 

[the equation y = O0(x, )~) specifies the initial position of the Lagrangian surface )~ = const; in this case, 
r  0, t) = 0 and O(x, 1, t) = h(x, t)]. 

In the new coordinates Eqs. (1.1) become 
1 

ut(x, A, t) + u(x, A, t)ux(x,  A, t) + g / gx(x ,  v, t)dv = O, Ht(x, A, t) + (u(x, A, t ) g ( x ,  A, t))z = O. (1.3) 
0 

Here the new unknown function H(x, A,t) = Oh(x, A, t) > 0 is introduced. We omit  the prime in the new 
variables. Solving this system we obtain 

A 

y = / H(x,  v, t)dv, v(x, v, t) = Or(x, v, t) + u(x, v, t)O~(x, v, t). 
0 

The change of variables is reversible if H = Oh ~ 0; it is sufficient to satisfy this condition for t = 0. 
Examples of partial solutions of the form 

u = u(a(z , t ) , y ) ,  v = a ~ ( a ( x , t ) , y ) ,  h = h(a(x , t ) )  (1.4) 

of Eqs. (1.1) were analyzed in [1-4]. They were called the simple waves of these equations. For system (1.3). 
the simple waves were introduced in [7]. These solutions admit  the representation 

u = u(a(x,  t), A), H = H(a(x ,  t), A), (1.5) 
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where a(x,  t) is a function of two variables. One can easily see that  by virtue of relations (1.2), any such 
solution can be transformed to solution (1.4) of the initial system of equations. 

In accordance with (1.3) and (1.5), the simple waves are defined by the system 

1 

k)u,~(a,~)+g/Ha(c~,u)du = O, (u(a,A) - k)Ha(cq~)+ H(vq,~)uo,(a,)~) = O, k = -c~t/c,..  (1.6) (u(~,~) 

0 

R e m a r k .  It would be more correct if solutions of the form (1.5) were called double waves, since the 
unknown quantities are functions of two independent  variables. But since the subclass of particular solutions 
of system (1.3) that  is characterized by the equalities u,~ _= 0 and Ha = 0 contains simple waves of the classical 
shallow-water equations, it is expedient to retain the terminology for the new class of solutions with similar 
properties. In this case, solutions of the form u = u(~) and H = H(~) that  describe stat ionary shear flows 
[in the initial variables u = u(y),  v = 0, and h =cons t ]  will play the same role as stat ionary solutions of the 
shallow-water equations. 

Teshukov [8] proposed extending the concept of hyperbolicity to systems of the form 

U t ( x , t , 2 )  + A(Uz(x , t , u ) )  = 0. (1.7) 

Here A is the nonlocal operator  acting on functions of the variable u for any fixed x and t. In the general 
case, A depends on x, t, )~, and U. 

In the hyperbolic case, system (1.7) can be transformed to the characteristic form. The  characteristic 
curves are defined by the differential equations dx/dt  = kB(x, t): 

(F" ,  U,  + k "U~)  = 0. (1.8) 

Here F ~ are eigenfunctionals tha t  act on functions of the variable ,k and are solutions of the eigenvalue problem 

(F ~, A(~o)) = k#(F ~, ~o); (1.9) 

k ~ are the corresponding characteristic eigenvalues and (F, ~o) is the result of action of the functional on the 
smooth trial function ~o. The  hyperbolicity conditions imply that  all k t~ satisfying (1.9) are real and the set 
of equalities (F  ~, S) = 0 is equivalent to S = 0 in a certain class of smooth vector functions S. In this case, 
Eqs. (1.7) and (1.8) are equivalent, since (1.8) is obtained by the action of F ~ on (1.7). 

The  simple waves of Eqs. (1.7) satisfy the system 

A(U,,) - kU,, = O, k = -otiose.  

For simple waves, the characteristic relations become 

(F a, (k a - k)U~) = (k # - k)(F a, Us )  = 0. 

If (F #, Ua)  = 0 for all /3, then,  as follows from the aforesaid, U s  = 0, i.e., U = U(,k). Consequently. 
a nontrivial solution of the simple-wave type exists only if for each pair of values of x and t, there is an 
eigenvalue k ~ such that  k ~ - k = k ~ + at/c~z = O. 

System (1.3) has the form of (1.7), if we set U = (u, H) t [( , )t denotes transposition] and 

1 t 

A((:,,:.> = (., + . / + .,) . 
0 

It was shown in [8, 9] tha t  for any smooth solution, there are only two real characteristic values kx and 
k2 that  satisfy the characteristic equation 

1 

f Hdu (1.10) 1 = g 

0 
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[kl < rain u(x, ~, t) and k2 > max u(x, ~, t)] and correspond to the discrete spectrum of the operator A. In 

addition, a continuous spectrum of characteristic values k x = u(x, ~, t), where )~ E (0, 1) is determined. 
Thus, we can conclude that  the following possibilities for simple-wave solutions are realized: either 

k = kl(a) ,  or k = k2(o~), or k = u(a, ~(a)), where )~(a) is a smooth function. 
In the present paper, simple waves corresponding to the discrete characteristic spectrum are studied. 

For determinacy, the case k = k2(c~) is considered [the case k = k~(a) is analyzed in a similar way]. 
It was shown in [8] that  the characteristic conditions for system (1.3) allow one to introduce the 

Riemann invariants: 
Rt + uR~ = O, wt + uw~ =0, rit + kiriz = 0 ,  

1 H'du 1 H'du 
= u - g f - -  w = u ) J H ,  r i = k i - g f  u , R 

U t - -  U '  - -  k i "  
0 0 

(1.11) 

Here u = u(x, A, t), u' = u(x,  u, t), H' = H(x,  u, t), and the principal Cauchy value of the integral is used in 
the representation of the function R. For the simple wave in question, relations (1.11) lead to the equalities 

n = R0(~), w = w0(~), rl  = r ~ = const. (1.12) 

The functions R0(~) and w0(A) and the constant r ~ are determined from the conditions of continuous joining 
of a simple wave to the given shear flow u = u0()Q, H = H0(~) along the boundary characteristics a = const. 
The function k(x, t) = k2(x, t) is governed by the equation 

kt + kkz = 0. (1.13) 

Any solution of Eq. (1.13) and relations (1.12) define a simple wave u = u(k, ~), H = H(k,  ~). The functions 
u and H are found by solution of the system of nonlinear integral equations following from (1.11) and (1.12). 
In view of the complexity of these equations, we give a direct proof of the existence of a solution of system 
(1.6), using relations (1.12) as integrals of this system. 

2. E x i s t e n c e  a n d  P r o p e r t i e s  of  S imp le  Waves .  Below, as a simple wave parameter  a,  we consider 
the depth 

1 

h(z, t) = / H du. 
0 

The characteristics of a simple wave move with constant velocities dz/dt  = k, and the domain of definition 
of a simple wave in the space x, )~, t is covered by a one-parameter family of planes [h(x, t) = const]. In each 
plane, the functions u and H depend only on ~. It is natural  to consider the problem of continuous joining of 
a simple wave to the given shear flow at the characteristics h = hr, = const: 

I 

= - g ( u  - k) -1, Hh = gH(u - k) -2, h = [ Hdu, u = V0(A), H = H0(~). (2.1) Uh 
h=hm h = h m  

0 

Here h,n is the constant depth of the adjoining shear flow. Here and below, the larger characteristic root k_~ 
of Eq. (1.10) is denoted by k. 

From (2.1) follows the property: if u ( h m , / ~ l )  = u ( h m , / ~ 2 ) ,  then u ( h , ) q )  = u(h,/~2) everywhere in 
the simple-wave domain. This is obvious, because the equation for the difference ~ = u(h, ~1) - u(h, A2) is 
homogeneous: 

gh = gS(u(h, )q) - k ) - l (u(h ,  ~2) - k) -1, ~(hm) = O. 

Therefore, if the horizontal velocity is a monotonic function of A for h = hm [u~(A) r 0], then ua(h, •) ~ O. 
The problem of continuous joining of a simple wave to the given shear flow with a nonmonotonic 

velocity profile can be reduced to the problem with a monotonic profile. Indeed, consider the velocity profile 
V0(~) shown in Fig. 1: Vg(A) > 0 for 0 ~< ~ < A, and Vg(~) < 0 for ~. < ~ ~< 1. Let V0(~l) = V0(1). 
We define the function f (~ )  in the interval (~x,~,) by the equality V0(~) = Vo(f(~)). According to the 
above properties, the equality u(h, ~) = u(h, f (~))  [~, <~ f(A) <~ 1] is valid in the simple-wave domain. We 
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introduce the function Hi(h, A) = H(h,f(A))f'(A) and the function H2(h, A) which is defined as follows: 
H2(h, A) = H(h, A) for A E [0, A1], and H2(h, A) = H(h, A) - Hi(h, A) for A E (A1, A,). Since 

1 Hdv ~1 H(h,v)dv y f f fo (H(h,v)- H(h,f(u))f'(v))dv a. H2(h,v)dv 
0 A 1 0 

s = O ,  1, 2 , . . . ,  

a problem of the form (2.1) for u(h,A) and H2(h,A) in the interval A E [0, A.] with a monotonic velocity 
profile is obtained: V0~(A) # 0 for A E [0, A.) (the integrals over the interval [0, 1] in (1.10) and (2.1) should 
be replaced by the integrals over the interval [0, A,]). If this problem is solved, one should solve additionally 
the linear problem g h  = gg(u - k) -2 and g(hm, A) = H0(A) + Ho(f(A))f'(A) for the unknown function 
K(h,A) = H(h,A) + Hi(h ,  A). 

Next, we can find a solution of the initial problem with a nonmonotonic  velocity profile: for A E [0, A1], it 
coincides with the solution of the reduced problem; u(h, A) coincides with the solution of the reduced problem 
and H = 2-1(H2 + K) for A e [AI,A.]; u(h,A) = ur(h,f-l(A)) and H(h,A) = [ ( 2 f ' ) - l ( K  - H2)l(h,f-l(A)) 
for A E [A., 1]. Here ur is a solution of the reduced problem and f - l ( A )  is a function that  is inverse to f .  The 
case of a nonmonotonic velocity profile with a finite number  of points at which the derivative changes sign is 
considered in a similar way. It should be noted that  the reduced problem has the following peculiarities: first. 
the functions H2(hm, A) and H2(h, A) are discontinuous for A = AI; second, uA(h, A,) = 0. 

In what follows, we assume that  V~(A) # 0 if A # 1. We shall consider the case of V~ t> 0 (the problem 
in the interval [0, A.] reduces to the problem in the interval [0, 1] by dilatation of the variable A). 

Differentiating the characteristic equation yields the following differential equation for the function 
k(h): 

kh = (u - k)4 (u - k ) ' ]  ' k(h ) = k ~ (2.2) 
0 

The initial condition for this equation is the coincidence of the characteristic velocity on the boundary with 
the larger real root k ~ of Eq. (1.10) for u = ~(A)  and H = H0(A). From (2.1) one can also obtain the following 
differential equation for the function ux(h, A): 

uxh = gu~(u - k) -2, u)~(hm, A) = V0~(A). (2.3) 

Let us prove the local existence of a solution of problem (2.1)-(2.3) assuming that  V0(A) is a 
continuously differentiable function, H0(A) is a continuous function, H0(A) > (5 > 0, and ko-Vo(A) > (~ > 0. We 
introduce a Banach space B of elements V = (u, u,~, H, k) with a norm I]V]] = rn~x [u[+max lux[+m~x ]g[+Ik I. 

The first three components  of the vector V are continuous functions of the variable A E [0, 1] and the 
last component  is a real number .  Problem (2.1)-(2.3) is representable in the general form 

dV/dh = F(V) ,  V(h,~) = V0. (2.4) 

Here F (V)  is a nonlinear operator  in the space B. Following the known existence theorem for differential 
equations in a Banach space [10], if there is e > 0 such that  the inequalities 

[IF(V)[[ < M, [IF(V,) - F(V2)I I ~< KIWi  - V21[ (2.5) 

are valid for [[V-V0]] < e, problem (2.4) has a unique solution V(h)  E B for ]h-hm] < 61 = min(~M -1, K - l ) ,  
such that  HV - V01{ < e. 

Let us verify that  the conditions of the theorem are satisfied. We consider a ball ]iV - V0[I < 2 -l~- 
For elements of this ball, we have ]u - k[ > 2-a/~ and ]HI > 2 - l &  Indeed, 

{u - k{ = IV0 - k0 + u -  V0 + k0 - k]/> IV0 - k0] - I I v -  v01] > 2-16, 

IHI = In0 + H - n01/> I H o l -  IIV - V01l > 2-1L 

214 



By virtue of the continuity of mappings that  define F (V)  on the set [u - k I > 2-16 and IHI > 2-15, there 
are constants M(6, IIV011) and K(6, IIV011) for which inequalities (2.5) are valid. Then, following the above 
theorem, the solution of problem (2.4) exists and it is unique for Ih - hm[ < ~x(~i, IIV011). As mentioned 
above, the problem with a nonmonotonic  velocity profile V0(A) requires introducing discontinuities of the 
function H(h, A). The local existence theorem for a solution can be obtained in this case as well. If 0 < 
A1 < A2 < . . .  < An < l are the points of discontinuity of the function H, as elements of B we consider 
vectors (ul, ul,~, H1, us, u2;~, H 2 , . . . ,  U,+l,  u,~+l~, Hn+l, k), whose first components are continuous functions 
in the intervals [Aj, Aj+I] (A0 = 0 and An+l = 1) and all arguments are repeated. For the solution obtained. 
one can prove, using Eqs. (2.1)-(2.3), that  u is a continuously differentiable function with respect to A, while 
H is a piecewise continuous function with points of discontinuity A1, . . . ,  A,. 

Let us prove the global existence theorem with respect to h for the simple-wave problem, assuming 
that  

Vd(A) > 0, A E [0, 1), k0 > V0(1) q- (~, (~o0(A)) -1 = H0(A)(Vd(A)) -1 /> a > 0, H0(A) > (~ > 0. (2.6) 

L e m m a .  For each solution of problem (2.1)-(2.3), the following inequalities are satisfied: 

(gh) 1/2 + a- lh  >1 k -- u >t (gh)l/2(1 + h1/2 g-1/2a-1) -1. (2.7) 

P r o o f .  In a neighborhood of h = hm, the inequalities k > ul > u > u0 [Ul = u(h, 1) and u0 = u(h, 0)] 
are satisfied by virtue of continuity. As mentioned above, the relations 

i H'du u[1 1 du' 
g ( j~_~)2  - g J [ o , ( u , - Z k ) 2  - 1, 

Uo 

give integrals of Eqs. (2.1)-(2.3). Using the inequalities 

O < ~ k - u l  < ~ k - u < < . k - u o ,  

from (2.8), we obtain 

w = w0(A) = V~(A)(H0(A)) -1 

1 1 

(k - uo)  a f Hd,  = gh, (k - a f Ha , = ah. 
0 0 

The relation 

1] 
ul k ' 

I Ul 

0 uo 

and the inequality w -1 /> a give h ) a(ul  - uo). 
From (2.8), we have 

Ul 

1 = g  w I ( u ' Z k ) 2  ~>ga - u0 k 
u0 

(2.8) 

(2.9) 

and, hence, k - u 1  >>. ga(k-uo)[k-uo+ga]  -1 >>. (gh)l/2(l +hl/2g-1/2a-1) -1. Since k - u o  = k-u l - - l -Ul - i t0  
(gh) 1/2 + a-Xh, the inequalities of the lemma follow from (2.9). 

Using a priori est imates (2.7) and system (2.1)-(2.3), we can prove that  u(h, A), uA(h, A), g(h,  A), and 
k(h) are bounded in any interval h E [a, A] (0 < (r < hm < d) .  The inequalities [u - k I > r A, [[V0[[) and 
H > r A, ]]V0][) hold in this interval. 

Sequential application of the local existence theorem gives the existence of a solution of problem (2.1)- 
(2.3) over the entire interval h E (0, A). Thus, we proved 

T h e o r e m .  Let the function Vo(A) be continuously differentiable in the interval [0, 1] and the function 
Ho(A) piecewise continuous with a finite number of points of discontinuity of the first kind. Let conditions 
(2.6) be satisfied. Then problem (2.1)-(2.3) has a unique solution in any interval h e (0, A] (hm e (0, A]), 
with the continuously differentiable function u(A, h) and the piece-wise continuous function H ( A, h ). 
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As was mentioned above, the monotony of the velocity profile does not lead to the loss of generality, 
and the condition (w0(A)) -1 /> a implies boundedness of the derivative uy on the boundary characteristic 
h = hm (w = uy in accordance with the relations between x, y, t and z, ~, t). 

If h --* 0 on the closing simple-wave characteristics, the solution describes the spreading of the shear 
flow over a dry bed. It follows from (2.7) that u --~ k as h ---* 0, which implies smoothing of the flow velocity 
over the depth. The flow velocity over a dry bed is defined by the equality u = k = r ~ Indeed, the relation 

1 

fo Hdu - rl 0 = const = 

gives an integral of Eqs. (2.1)-(2.3). Using the Cauchy inequality, we obtain 

0 (uZ-k l )  <~ (u - k l )2/  0 H d ,  = h I/2, 1 = g 0 (U= k l )  2 <~ ( U l  - -  kl) 2gh" 

Therefore, Ul --* kl and kl ---* rl  = r ~ as h ---* 0. 
In the simple wave considered, the flow velocity u(h, ~) increases along each Lagrangian surface • = 

const, if the level h decreases. The wave increasing the fluid level h decreases u(h, ~). Since k > u, the fluid 
particles enter the simple-wave zone from the right (with respect to the x direction). For a left simple wave 
(k < u), the behavior of u(h, ~) changes to the opposite. If V0(~) > 0 in the upstream flow, the passage of 
a right simple wave does not produce a critical layer (u = 0) in the stationary downstream shear flow. If 
V0(s < 0, the critical layer can be produced by the passage of the wave. 

To complete the construction of the simple wave, we have to solve the Cauchy problem ht + k(h)h~ = 0 
and h(x, O) = ho(x). Any solution of this equation determines a pair of functions u(x, )~, t) = u(h(x,  t), ~) and 
H(z ,  A, t) = H(h(x ,  t), ~) that  satisfy system (1.3). If h~o(x) > 0, the solution gives a right wave decreasing 
the fluid level. Since k~(h) > 0, the Cauchy problem has a smooth solution for t > 0. If there are points x 
such that h~o(x) < 0 for t = 0, zones with increasing fluid levels appear and, as is known, breaking of the 
wave will happen: the derivatives of the function h become unbounded at a certain moment  of time. Further 
description of the flow evolution requires constructing discontinuous functions [11]. 

3. E x a c t  S o l u t i o n  o f  t h e  T y p e  of  a S i m p l e  Wave .  As was mentioned above, the Riemann invariants 
R and w -1 depend only on ~, and, hence, they are functionally dependent in a simple wave. 

We consider the simple case R = Bw -1, where B = const. It is convenient to represent B in the form 
B = g r c o t a n # r ,  where/~ is a real parameter. We determine the function w -1 from the integral equation 

Ul 1 du I 1 
= - g~" cotan~rr. (3. l) 

u - - g  ~ j  u - 7 - ~ _  u r 
u0 

Here, assuming that u), r 0 (and, hence, w -1 r 0) for 0 < ~ < 1, we choose u as the integration variable in 
the formula representing the Riemann invariant R. Equation (3.1) is a linear singular integral equation for 
the unknown w -1. According to the general theory of singular integral equations [12], Eq. (3.1) has a unique 
solution in the class of functions bounded at the point u = u0 and unbounded at the point u = ul. Using the 
methods developed in [12], we obtain a solution in the form (assuming that 0 < # < 1) 

~z -1  = s in  #~ ' (9~r ) - I  (u  - #(ul  - u0 ))  ( u  - u0 ~ ~' 
\ u  1 - -  u /  " 

(3.2) 

Using formulas (1.11) we find the Riemann invariants ri: 

ri = (ki - # ( U l  - u 0 ) )  k i ]  

Here the characteristic velocity ki satisfies Eq. (1.10) or the equivalent equation Or~Ok = 0 with the function 
r(k, ul, u0) defined by (3.3). The velocities ki are roots of the quadratic equation 

k 2 - -  ( U l  "1- U0 -1- /~(Ul  - -  uo))k  -}- UlUO -t-/22(Ul - u 0 )  2 = 0.  (3.4) 
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A simple wave is defined if we set 
w - 1 = f ( A ) ,  r l = r  ~ k 2 = k ( x , t ) ,  (3.5) 

where k ( z , t )  is any solution of Eq. (1.13). In accordance with the assumptions used in constructing the 
solution (3.2), we have f()Q > 0 for )~ E (0, 1), and f(0) = 0 and f(~)  ---* oo for A ~ 1. With this choice, the 
function u(k, )~) determined from (3.5) satisfies the inequalities 

0 < u0 <~ u ~< Ul ~< p - l (1  + p)u0. (3.6) 

We introduce the dimensionless quantities Ki = 2ki(Ulm - U 0 m )  -1, Ui = 2ui(Ulm - U 0 m )  -1, and 
Ri = 2ri(ulm - U0m) -1, where Ulm and uom are the values of ul and u0 for h = hm. 

Equation (3.4) has the real roots 

[ K 1 2 = z  7 + # ~  , z -  , 7 -  , (3.7) 
' t t l m  - -  U 0 m  U l  - -  t t 0  

since 7 > (1 + 2#) by virtue of (3.6). The relations 

(x/1 + 23~m# -- 1 - - ~ )  ~ 
R1 = (Trn -- # -- ~/1 + 27m#) ~/1 + 27m # + 1 

(x/1 + 2 7 #  + 1 - ~ ) "  
z = + 1 , 

K = K 2  = z ( 3 ' + # + ~ / 1 + 2 " / # ) ,  U l = z ( l + 7 ) ,  U 0 = z ( 7 - 1 )  

define the dependences UI(K) ,  and Uo(K) in parametric form, with the parameter 7 varying in the interval 
(1 + 2#, oo); 7m is the fixed value from this interval corresponding to the boundary characteristics h = hm. 
The function H(k,  A) is given by the relation H = u~w -1. Transformation to the variable y is defined by the 
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formula (y = hmY) 

sin #Tr z _ _ . ~  2 
- 1   -ldu= _ 1-2 )Bs(1 

tt 0 

where Bs(p, q) is an incomplete Z-function and s = (u - uo)(u] - uo) -I.  The fluid-layer depth is expressed 
in the form h = hmz2(7 - #)(Tin - #)-1. The parameter 7m is related to the Froude number Frm = (ulm - 
uom)(ghm) -1/2 by the relation Frm = v/2(#(Tm - #))-I/2.  

Figure 2 show velocity profiles for # = 1/3 and Frm = 1 with variation of K in the simple wave 
describing the spreading of the shear flow over a dry bed [U = 2u(utm - u0m)-l]. Each curve is a graph of U 
for fixed K. Figure 3 shows graphs of the bottom and the free-surface velocities (curves 1 and 2) and a graph 
of the function h~nth(K). One can see that the flow velocity is smoothed as h ---* 0 and tends to the value of 
the Riemann invariant r ~ The resulting exact solution is expressed as well as the Freeman solution in terms 
of incomplete E-functions but describes another flow. 

As a result, we established the existence of simple-wave solutions for system (1.3). It should be noted 
that the sufficient conditions for hyperbolicity of system (1.3) obtained in [9] can be formulated only in 
terms of the Riemann invariants R and w in the case of an incompressible fluid (p = const). Owing to 
the conservation of these invariants in a simple wave, this solution belongs to the region of hyperbolicity of 
equations if these equations are hyperbolic for the shear flow adjoining to the simple wave. The conservation of 
Riemann invariants in the simple wave determines situations in which such a flow appears. If a perturbation 
front (discrete-spectrum characteristic) moves over an undisturbed shear flow, the flow in a region behind 
these characteristics is a simple wave. This follows from the fact that three of the four Riemann invariants in 
the region behind the front are the same as in the incident shear flow. 
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